

OS **OpenData** Masterclass

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

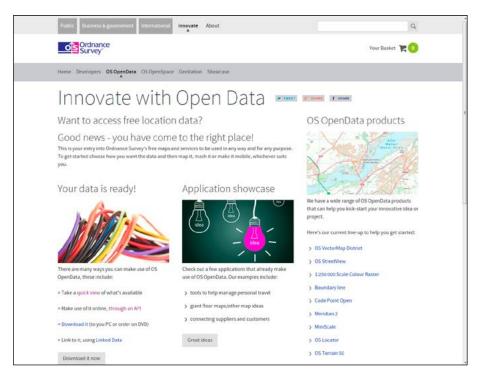
Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

Introduction

This course is aimed at anyone with no previous knowledge of geographical information systems (GIS). It is intended as an introduction to OS OpenData™ products, and how to use them in an open-source GIS.

A GIS is a computer system capable of capturing, storing, checking, integrating, manipulating, analysing and displaying geographic information (GI). They can be small desktop software packages running on a single machine or very large network-based systems comprising many software components across a whole organisation.


Throughout the following four exercises, you will use Quantum GIS (QGIS). This is one of many open-source GIS products, which can be downloaded free of charge.

Exercise 1 Downloading OS OpenData

In this exercise, we will run through the process of downloading the OS OpenData products.

1 Firstly, you will need to download the OpenData products from Ordnance Survey's website. Visit http://www.ordnancesurvey.co.uk/innovate/innovate-with-open-data.html or follow the pathway http://www.ordnancesurvey.co.uk →Innovate → OS OpenData

Please note: Ordnance Survey OpenData consists of 11 continuously maintained products, providing information from postcodes and boundaries to digital backdrop maps. The 12th product, Land-Form PANORAMA, is a legacy product and is not updated.

Introduction

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data

in QGIS

Exercise 4

Carrying out a spatial query in QGIS

2 This will open a web page where all the OpenData products are available, as either a DVD delivery or download, or both.

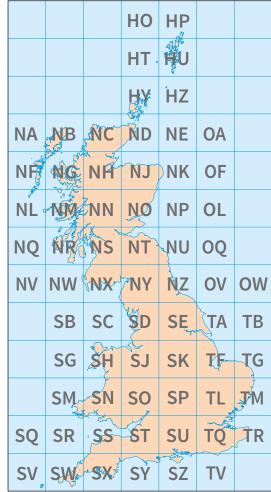
Product		Coverage	DVD	Download
Sou	MiniScale®	Great Britain [304 Mb]		
	Data type: Raster			
	Supply format. TIFF-LZW			
	Version: 01/2013			
	MiniScale is the smallest-scale product in the OS OpenData catalogue and has been			

While most of the 12 products available are downloadable at Great Britain coverage, three products (**OS VectorMap District**[®] **Raster and Vector** and **OS Street View**[®]) must be downloaded according to their 2-letter grid reference. To choose which grid references you will need to download, there are a number of useful resources available:

- 3 Open a new tab in your web browser and visit the Ordnance Survey '**OS getamap™**' web page: http://www.getamap.ordnancesurveyleisure.co.uk/. The Get-a-Map service provides Ordnance Survey Leisure maps online, with numerous interactive options such as creating and sharing cycling and walking routes, loading to a GPS device, access to the *Good Pub Guide, Country Walking* and *Trail Magazine* information. The home page can also be used to work out the grid reference of a particular place.
- 4 Our study area will be the Isle of Wight. Search for '**Cowes**' in the search bar on the left-hand side of the screen. The six-figure grid reference for the centre of the screen will then be shown (see below). The first two letters are **SZ**, therefore this is the 100 km grid-square we will need to download to view Cowes within the GIS.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS


Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

 \mathbf{M}

5 This is put into context when you see the national grid in its entirety (see right). This is also available as the **national_grid.bmp** image within the folders OSOS_QGIS_2013 →ALL_DATA. This is an image of the national grid referencing system, which is used for all Ordnance Survey maps. For the following four exercises, we will be looking at the **SZ** 100 km square only.

Further information can be accessed here: http://www.ordnancesurvey.co.uk/resources/ maps-and-geographic-resources/the-national-grid.html

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3

Opening the ONS data in QGIS

Exercise 4

Carrying out a spatial query in QGIS

The GIS data are available in different formats depending on the information they contain. When we open the products in QGIS, this will become important. OS OpenData products are supplied in three main formats:

- Raster a pixelated image; as you zoom in the pixels will become bigger, creating a blurry image. It is difficult to change the styling of raster products.
- Vector a series of points, lines and polygons. Points are single dots, lines connect these points, and polygons are shapes. Upon zooming in, the map retains its clarity. It is much easier to change the styling of vector format maps.
- Point point data is a table of information that can be added to a map using a geographical reference.

For example, OS Terrain 50[®] is a grid and vector product, supplied in ESRI[®] Shape (contours), GML (contours) and ASCII Grid and GML (grid) formats, available at a Great Britain coverage as a download only (see below):

- Chan	OS Terrain 50	Great Britain	N/A	0
	Data type: Grid, Vector (Contours)	[ESRI @ Shape (Contours): 1.1 Gb]		
	Supply format: ESRI @ Shape (Contours)	[GML (Contours): 1.1 Gb] [ASCII Grid and GML (Grid): 162 Mb]		
	Version: 07/2013			

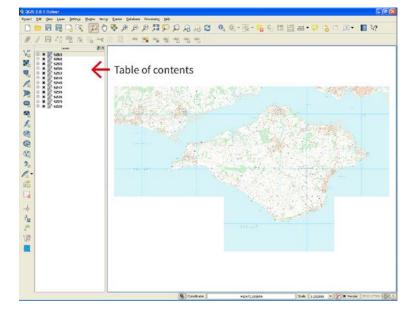
The OS OpenData products we will be using in this exercise are:

- OS VectorMap District[®] vector a mid-scale district map in vector format.
- **OS VectorMap District raster** a mid-scale district map in raster format.
- **OS Terrain 50**[®] this is a height/topography product which displays 10 m contours in vector format.
- 6 Select the 'download' option for these three products, ensuring you have selected the correct National Grid reference square for **OS VectorMap District**[®] (SZ), and select 'next'. Fill in your personal details and select 'Continue'. Enter an email address which you will have access to during the workshop. Once the request has been submitted, it will take a few minutes to two hours for the links to arrive in your inbox.
- 7 When you receive the email, the files are in a 'zipped' format, which greatly reduces the file size, and allows it to be sent via email. Right-click on the download link and save the file to a location of your choice. Once downloaded, you will need to unzip the files to read them in their useable formats. Once all contents have been unzipped, the original zipped file can be deleted.

Please note: These products have been pre-downloaded to use in the following workshops and are accessible within the folder: $OSOS_GQIS_2013 \rightarrow ALL_DATA$. Please use this data for this workshop.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS


Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

Exercise 2 Opening the OS OpenData products in QGIS

Throughout this exercise, we will run through how to open the OS OpenData products in QGIS (the open-source GIS). The products we will be using consist of a background map for context (**OS VectorMap District: raster format**), a map we can manipulate and style to see basic infrastructure (**OS VectorMap District: vector format**), and a product that shows topography (**OS Terrain 50**). This exercise will therefore guide you through opening both raster and vector files within QGIS.

- I Open QGIS 2.0.1 from Start → Programs → QQIS Dufour → QGIS Desktop 2.0.1.
- 2 Firstly, we will open OS VectorMap District: raster format. Select 'Add Raster Layer' in the left-hand toolbar (see right).
- 3 Click 'Browse' and navigate to OSOD_QGIS_2013 →ALL_DATA → VectorMap_District_Raster → data. Select all the .tif files. Click 'Open'.
- 4 A map, similar to the one below, will appear:

Please note: In future, when opening a large number of individual raster files, it may be more efficient to input them into QGIS using the 'Build Virtual Raster' option (click on the 'Raster' tab, then 'Miscellaneous', then 'Build Virtual Raster (Catalog)'). Here, you are able to input numerous raster files, and output one .vrt file, enabling all raster files to be opened in QGIS as a single file.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS **Please note:** the table of contents on the left-hand side of the screen is where the 'layers' are displayed. Here, each 10km raster square is displayed as a separate layer.

5 Use the toolbar to zoom in/out and drag the map.

- 6 Now is a good time to save the workspace. Select 'Project'→ 'Save As' → "OSOpenData_QGIS_Workshop" (or similar), click 'Save'. Remember to save your work regularly.
- 7 Now we will open OS VectorMap District: vector format. Select 'Add Vector Layer' in the left-hand toolbar (see below).

urce typ	e			
File	O Directory	O Database	O Protocol	
ncoding	System			-
urce				
arco				
				owse

- 8 Click 'Browse' and select OSOD_QGIS_2013 →ALL_DATA → VectorMap_District_Vector→ data. Change the File type to 'ESRI Shapefiles (.shp)', now select and open the following three files:
 - i. SZ_Building.shp
 - ii. SZ_RailwayTrack.shp
 - iii. SZ_Road.shp

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

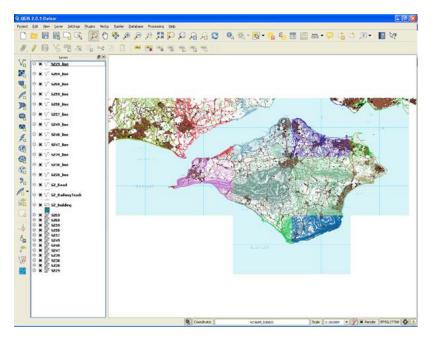
Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS We are only looking at the basic transport network and buildings in order to get a general depiction of the land use and infrastructure; therefore we have only selected these three features to display. Click 'Open'. This will bring up a map image similar to the one below, where the vector layers are overlaid on the raster layers:

9 Finally, we will open OS Terrain 50[®], which is also a vector product. Click on 'Add Vector Layer' (see below right); click 'Browse', and select OSOD_QGIS_2013 → ALL_DATA → Terrain_50 → line. Change the file type to 'ESRI Shapefiles (.shp)', select all and click 'Open'.

Please note: In future, when opening a large number of individual vector files, it may be more efficient to input them into QGIS using the 'Merge shapefiles to one' option (click on the 'Vector' tab, then 'Data Management tools', then 'Merge shapefiles to one'). Here, you can input numerous polygons, lines or points, and output one, new, shapefile. This makes it easier to edit the layers as one.

Po


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

You will see a screen similar to the one below:

10 To organise the table of contents and group each collection of layers, select all the raster layers (click on the top layer, press shift, and click on the last layer), right click and select 'Group Selected'. Rename the group 'VectorMap_District_Raster'. Do the same for the 'VectorMap_District_Vector' and 'Terrain_50' layers.

Please note: The position of the layers in the table of contents determines their visibility on the map. For example, the top layer will be visible until it is dragged to sit beneath the layer below. You can experiment with this by changing the order of the layers in the table of contents (drag and drop). Layers can also be turned on and off (visible and invisible) by ticking and unticking the boxes beside them.

11 QGIS randomly assigns a colour to each new layer feature when it is opened. To change the style of these features, you can create your own style, or use pre-designed 'Styled Layer Descriptor' (SLD) files, which are available to download free of charge from the Ordnance Survey website:

http://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/styled-layer-descriptors.html Some custom-made styles for use within this workshop are available within the folder OSOD_QGIS_2013 \rightarrow ALL_DATA.

Exercise 1 Downloading OS OpenData


Exercise 2 Opening the OS OpenData products in QGIS

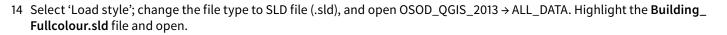
Exercise 3 Opening the ONS data in QGIS

Exercise 4

Carrying out a spatial query in QGIS

13 Ensure the 'Style' tab on the left is active, and change the 'Single Symbol' selection to 'Categorised'.

General	Style	
2.04	Layer rendering	
Style Style	Layer transparency	
(abc Labels	Layer blending mode	
Fields	Categorized 👻	
Display	Single Symbol	
-	Categorized	
Actions	Craduated Rule-based	
e Joins	Point displacement	La
Diagrams		
P Metadata		


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4

Carrying out a spatial query in QGIS

General	Style Laver rendering				
Style	Layer transparency	0			- 0
Labeis	Layer blending mode	Normal	Feature blending mode	Normal	
Fields	2 Categorized				
Display	Column FEATCODE				
Actions	Symbol	Change	Color ramp Blues		
Joins	Symbol 🔨 Value	Label			
Disgrams					
Disgrams Metadata					
Diograms Metadata					
-Dart of the	Clessify Add	Delete Delete		net	Advance

15 You will notice that the building polygon and outline labels have a minimum and maximum scale applied to each label. Double-click on the maximum scale of each of the three labels and change to match the selections below, also change the 'label' to match. Now when we zoom out to the extent of the Isle of Wight, the building polygons and outlines will be visible. Click OK.

X General	Style	0						- 0 0
abc Labels	Layer transparency Layer blending mode	Normal		Feature bl	ending mode	Normal		•
Fields	Rule-based -							
🤛 Display	Label		Rule		Min. scale	Max. scale	Count	Duplicate co
Actions			(no filter)		1:7,14			
	Eulding outline 1:1 Eulding outline 1:7	5,000 to 1:300,000	(no filter) (no filter)		1:15,00			
Joins		,	(no men)				8	
Diagrams								
Metadata								
-								
-								
-								
-	٤							
-	and a second second second second	fine current rules *	Count features	1			Ren	dering order.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

- 16 For both the **SZ_Road** and the **SZ_RailwayTrack** layers, repeat steps 12 and 13. You will have selected 'Categorised' in the 'Layer Properties' screen; now select the column as 'CLASSIFICA'. Nothing will appear immediately. You now need to select the overall 'Colour Ramp' of the roads/railway tracks.
- 17 Either click on the 'Colour Ramp' tab and select a colour gradient of your choice and click 'Classify' (see below), or select 'load style'. Change the file type to 'SLD File' (.sld), select 'VMD_SZ_Road_Style.sld' (see below) and 'Railway Track_ FullColour.sld' for the appropriate feature, and click 'Open'. Once happy with your selections, click 'OK'.

Please note: You must first 'delete' any selections within the layer properties screen before editing and re-classifying.

K General	Style Layer renderin	a					
💕 Style	Layer transparen	xv 0					- 0 ¢
abc Labels	Layer blending m	ode Normal		Feature ble	nding mode	Normal	•
Fields	2 Categorized						
🧭 Display	Column CLASSIFI	CA					
Actions	Symbol	Change		Color ramp	SZ_Roads		
♥◀ Joins Iir Diagrams	Al Al Bl Lo Lo Mi Mi Pe Pri Pri	ke Road Road, Collapsed Dual Carriageway Road Gaad, Collapsed Dual Carriageway cal Street nor Road, Collapsed Dual Carriagewa destinatised Street many Road, Collapsed Dual Carriage wate Road Publicy Accessible	B Road B Road Local S Minor R Pedest Primary may Primary	, Collapsed Di , Collapsed Di treet oad oad, Collapse ianised Street Road	sed Dual Carriageway	to.	
Restore Default	Classify Style	Add Delete Save As Default	Delete all	Load Style		Join Save Styl	Advanced

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

 \mathbf{M}

E**xercise 4** Carrying out a spatial query in QGIS 18 Now, in the table of contents, select the top OS Terrain 50 layer within the Terrain_50 group (for example, SZ29_line), right-click and select 'Properties' and then click on the 'Load Style' button. Change the 'file type' to SLD file (.sld), and navigate to OSOD_QGIS_2013 → ALL_DATA and select Terrain_50_style.sld. Click 'OK'. This will have changed the colour of the contours of one 10 by 10 km grid.

K General	Style		
💓 92yle	Layer transparency		0
abc Labels	Layer blending mode Normal	Feature blending mode	Normal
Fields	≥ Single Symbol		
Display Actions Joins Diagrams		Unit Millimeter Transparency 0% Color Saved styles	width 1.00000 \$
Metadata	Symbol layers	Bridlewa: Canal Canal ri Co	
		Cycle p. Darn Ditch C	Symbol • Advanced
Restore Default	Style Save As Default	Load Style	Save Style

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

19 Right-click on the newly styled top layer, select 'Copy Style' (see right). Now right-click on each of the remaining Terrain_50 layers and 'Paste Style'. Continue with this method until all contours are a consistent style. You should now be viewing a screen similar to the one below:

Here **OS VectorMap District raster** is providing the colourful backdrop, **OS VectorMap District vector** is the styled layer showing the clusters of buildings, roads and railway networks and the distance between **OS Terrain 50** contours give an indication of land height.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

Upon zooming in, individual houses and road network features become more clear:

Now progress to the next exercise (exercise 3) to input the additional data.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

Exercise 3 Opening the ONS data in QGIS

We have opened and styled the OS OpenData products within QGIS. Now, we will open additional datasets within QGIS, and assign them a geographical reference to attach the data to the map. Many OS OpenData datasets can be found at: data.gov.uk, including data from ONS (Office for National Statistics). A page on Ordnance Survey's website outlines many other open data sources: http://www.ordnancesurvey.co.uk/innovate/geovation/data-sources.html

We will be looking at three open source datasets:

- Distance to GP surgeries (in kilometres)
- Percentage ageing population (% over 60s)
- GP surgery locations (exercise 4 only)

This information can be downloaded free of charge directly from ONS. For these exercises, it is available within the 'ONS_Access_data' folder.

The first task is to assign this data a geographic location, so we can display it on the map. Firstly, we will look at the 'Distance to GP' data. As this data is in .csv (comma separate values) format, this exercise will guide you through opening delimited text data in QGIS.

*Remember to save your work regularly.

- 1 This exercise will follow on from Exercise 2. Keep the QGIS workspace from Exercise 2 open.
- 2 Open up the Indices_of_Deprivation_2010.csv file in excel, OpenOffice Calc, or similar (OSOD_QGIS_2013 \rightarrow ALL_DATA \rightarrow ONS_Access_Data \rightarrow Distance_to_GP \rightarrow Indices_of_Deprivation_2010.csv). Browse to familiarise yourself with the data. Here we are mainly interested in the 'LSOA_CODE' column, and the 'DIST_TO_GP' column.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

Please note: The LSOA code refers to the 'Lower Layer Super Output Area', which is a measure of small area statistics used by ONS.
LSOAs are used where ward boundaries are too large to store useful population data (see diagram below).

	Local Authority Districts	or Unitary Authorities/London Boroughs (building up to higher areas – counties, GORS, etc.
	Upper Layer SOAs whole scheme nests within LAs	minimum population around 25,000 (not yet developed)
	Middle Layer SOAs will nest within Upper Layer	7,193 units minimum population 5,000 average population 7,200 released August 2004
Wards 8,800 units average population 6,000 Output Areas and Lower Layer SOAs nest within Census Standard Table Wards (January 2003)	Lower Layer SOAs nest within Middle Layer	34,378 units minimum population 1,000 average population 1,500 released January 2004
Ward boundary change will progressively break the relationship with wards	Output Areas nest within Lower Layer	175,434 units (E&W) minimum population 100 average population 300 target 125 households from Census 2001
	Source records allocated to higher units using NeSS tools	grid referenced – ideally from addresses

Taken from: http://www.neighbourhood.statistics.gov.uk/HTMLDocs/images/GeographyPolicy_tcm97-51009.pdf

Exercise 1 Downloading OS OpenData

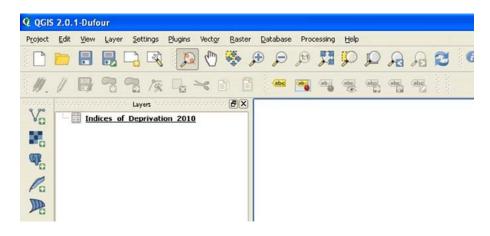
Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

- 3 The Indices_of_Deprivation_2010 data is stored as a .csv file ('comma separated values'). To input this into QGIS, click on the 'Add Delimited Text Layer' button (see right).
- 4 Click on 'Browse' and select the **Indices_of_Deprivation_2010.csv** file to open. Ensure the CSV button is selected, as well as the 'No geometry (attribute only table)' button, as this dataset does not have point coordinates within it. Click 'OK'.

.aye	er name Indic	es of Depriva	tion 2010				10	Encoding	UTF-8		
ile 1	format (CSV (con	nma separate	d values) 🤇	Custom de	elimiters	C	Regular	expressio	n delimite	ər
leco	ord options	Number of h	eader lines to	discard 0	🗘 🗶 Fi	rst record ha	s field names				
Teld	doptions	Trim field	s Discan	d empty fields	Decim	al separator	s comma				
Reiu				s monthe conside					1		
		n O Point coc			Wel known	text (WKT)	•(No geome	try attribu	ite only t	able
	metry definition	n 🔘 Point coo		0	Well known	text (WKT)	•(No geome	try attribu	ite only t	abl
		n 🔘 Point coo		0	Well known	text (WKT)	•(No geome	try (attribu	ite only t	abl
Seor	metry definition		ordinates	0			•(ite only t	tabl
Seor		n O Point coo	ordinates	0	Well known		•(No geome		ite only t	tabl
Seor	metry definition	Use spat	ordinates ial index	CTY_NAME		t index	•(FLA_CODE		ile	ite only t A_CODE	
Seor	metry definition	Use spat	ordinates ial index	0	Use subse	t index		Watch f	le	A_CODE	
Seor	metry definition er settings GOR_CODE	Use spat	ordinates ial index	0	Use subse	t index		Watch f	ile ME MSO E0200	A_CODE	Ŧ
Seon	er settings GOR_CODE	GOR_NAME	ordinates ial index	0	Use subse LA_CODE 00CH	t index LA_NAME Gateshead		Watch f	ile ME MSO E0200 E0200	A_CODE 01687	
aye	er settings GOR_CODE A A	GOR_NAME North East	ordinates ial index	0	Use subse LA_CODE 00CH 00CH	t index LA_NAME Gateshead Gateshead		Watch f	ile ME MSO E0200 E0200 E0200	A_CODE 01687 01687	0000
aye	er settings GOR_CODE A A A	Use spat	ordinates ial index	0	Use subse LA_CODE 00CH 00CH 00CH	LA_NAME Gateshead Gateshead Gateshead		Watch f	ile ME MSO E0200 E0200 E0200	A_CODE 01687 01687 01687 01692	0



Exercise 1 Downloading OS OpenData

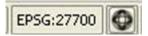
Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS This will insert an attribute-only layer into the layer column in QGIS (see below).

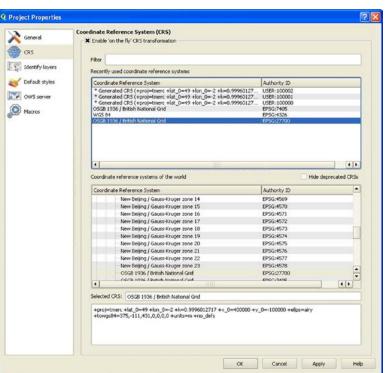
- 5 Right-click on the 'Indices_of_Deprivation_2010' layer and select 'Open Attribute Table'. Browse for reference. You will see that the table of data is the same as in excel. Close the table.
- 6 Now, you must assign this dataset a geographical location. To do this, we will use a publicly available super output area dataset in vector format. Select the 'Add Vector Layer' button (see right and below).

Add vec	tor layer		?
Source typ	Directory	O Database	
Encoding	System		
Source			
Dataset			Browse
		Open	Cancel Help


7 Click on 'Browse' and select the LSOA_regions_Feb04.shp file from within OSOD_QGIS_2013→ ALL_DATA → ONS_Access_ Data → Clipped_LSOAs and Open.

Exercise 1 Downloading OS OpenData

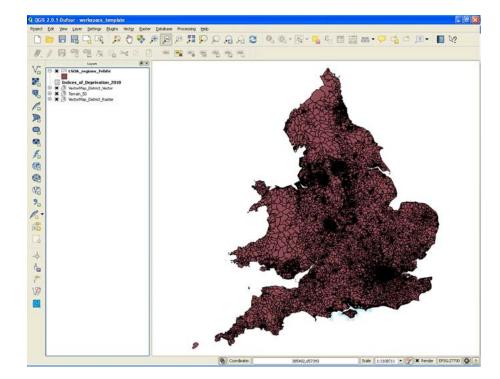
Exercise 2 Opening the OS OpenData products in QGIS


Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS 8 This will bring up the LSOA regions for Great Britain. We now need to make sure the Coordinate Reference System is correct; otherwise the map will be distorted. In the bottom right hand corner of your QGIS screen, it states the coordinate reference system that is currently being applied. It should read:

9 If this is correct, proceed to number 10. If not, select 'Project', then 'Project Properties'. Select 'CRS' from the left-hand column, then 'OSGB 1936 / British National Grid ESPG:27700', as below (If this is not within the 'Recently used coordinate reference systems', select from 'Coordinate reference systems of the world' → 'Projected coordinate systems' → 'Transverse Mercator', or use the 'Filter' at the top of the dialog box).

Click 'OK'.

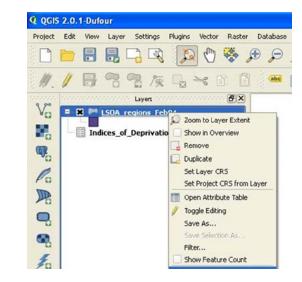

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

You should now see a screen similar to the one below:


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

KK

Exercise 4 Carrying out a spatial query in QGIS 10 You now need to join the Indices_of_Deprivation_2010 dataset to the LSOA_regions_Feb04, in order to plot the Indices_ of_Deprivation_2010 data on the map. To do this, we join the tables together. Right-click on the LSOA_regions_Feb04 layer title, and select 'Properties'.

11 From the 'Layer Properties' screen that opens, select the 'Joins' tab in the left-hand column, select the 'Add Vector Join' button. Fill in the 'Add Vector Join' screen that appears as below, selecting the following values from the drop-down lists:

- 12 Here, you are creating a geographical relationship between the LSOA_CODEs within the Indices_of_Deprivation_2010 dataset and the LSOA_CODEs within the LSOA_regions-Feb04 dataset. Click 'OK'.
- 13 Now you are able to exit the window, although the map will not have changed. This is because the map is styled to only show a single colour (and therefore is not showing any attribute data). Our aim now is to create a thematic map of LSOAs according to the distance to a GP surgery.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS **Thematic Maps:** *GI* systems have many ways by which to analyse imported information. One of the most powerful is the ability to create thematic maps. Thematic maps often appear in atlases and geography text books in which the different properties of the objects are symbolised in some way. For example, a map of parliamentary constituencies can be coloured with a different colour to represent the political party holding that seat.

14 With the LSOA_Regions_Feb04 'Properties' table open, click on the 'Style' tab from the left-hand menu and select the 'Graduated' option from the drop-down menu (see below).

General	Style Layer rendering Layer transparency	-
Skyle		
abc Labels	Layer blending mode	Norma
Fields	🔰 Single Symbol 👻	
💭 Display	Single Symbol Categorized	
Actions	Graduated Rule-based	20 20
Joins	Point displacement	

15 From the 'Column' drop-down selection that has now appeared, select 'Indices_of_Deprivation_2010_DIST_TO_GP'.

À General	Style Layer n	endering				
💕 Style	Layer tra	nsparency	0			
abc Labels	Layer ble	nding mode	Normal	-	Feature blending mode	N
Fields	诸 Gradu	ated 💌				
Display	Column	Indices_of_Deprivat	ion_2010_CTY_CODE			-
Actions	Symbol	Indices_of_Deprivati Indices_of_Deprivati	ion_2010_CTY_CODE ion_2010_BARRIERS_TO_HOUS ion_2010_AFFORDABILITY_IND	ICATOR	5	
Joins 🔷	Color ramp	Indices_of_Deprivation	ion_2010_DIST_TO_POST_OFF ion_2010_DIST_TO_FOOD_STO	ICE DRE		_
Diagrams	Symbol		ion 2010 DIST TO GP ion 2010 DIST TO PRIMARY	504001		

Exercise 1 Downloading OS OpenData

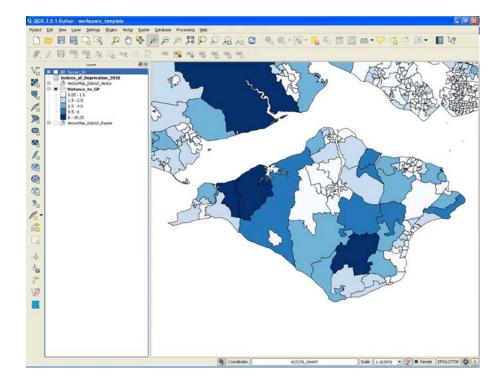
Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

- 16 Experiment with changing the 'Colour ramp', number of 'Classes' and the 'Mode' by which the values are categorised. In this example, although the 'Mode' selected is 'Natural Breaks (Jenks)', we want to create personalised bands by which the data is categorised.
- 17 By double-clicking on any of the 'Value's, they become editable. Fill in the values to match those in the image below. Now fill in the same numbers in the 'Labels' column. Click 'OK'.

K General	Style Layer r	endering						
o Style	Layer tra	nsparency	0				0	\$
(abc Labels	Layer ble	nding mode	Normal	•	Feature blending mode	Nor	rmal	-
Fields	Gradu	ated 💌						
🤛 Display	Column	Indices_of_Deprival	tion_2010_DIST_TO	_GP		•		
Actions	Symbol		Chan	ge		Classes	5	1
o Joins	Color ramp	[source]			•	Mode	Natural Breaks (Jenks	5)
Diagrams	Symbol	Value	Label					
Metadata		0.0500 - 1.5000 1.5000 - 2.5000						
0		2.5000 - 4.5000						
		6.0000 - 18.250						
					1			
	Classify		Delete	Delete all			Advanc	ed
Restore Default St	vle	Save As De	efault	Loa	id Style		Save Style	


18 Finally, right-click on the LSOA_regions_Feb04 layer in the table of contents, click 'Rename' and type 'Distance_to_GP' or similar.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

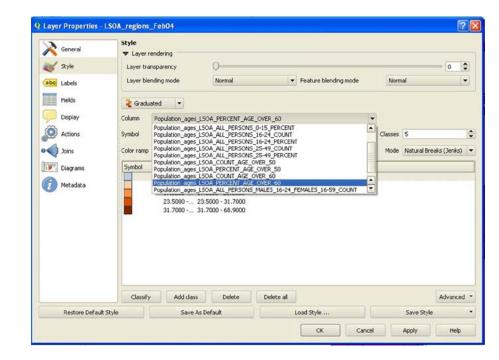
E**xercise 4** Carrying out a spatial query in QGIS You have now created a thematic map illustrating the distances people have to travel to visit their GPs within LSOA boundaries:

- 19 Ensure only the 'Terrain_50', 'VectorMap_District_Vector' and 'Distance_to_GP' layers are turned on (shown by the cross), with the 'Distance_to_GP' thematic map as the bottom layer. Which areas tend to have less distance to travel to their GP? Which areas tend to have more?
- 20 Now, we will follow the same process to create a thematic map illustrating the percentage of people aged over 60. Repeat steps 3-9, opening the file '**Population_ages_LSOA**' LSOA' (within OSOD_QGIS_2013→ ALL_DATA → ONS_Access_Data → Population_Data) rather than '**Indices_of_Deprivation_2010**'.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3


K

Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS 21 Right-click on the 'LSOA_regions_Feb04' layer in the table of contents, and select 'Properties'. Ensure the 'Joins' tab is active, and select the 'Add Vector Join' button (see right). Fill in the 'Add Vector Join' screen that appears, selecting the right values from the drop-down lists, as below:

loin layer	Population_ages_LSOA	•
loin field	LSOA_CODE	
larget field	LSOA_CODE	
	in layer in virtual memory Atribute index on join field	
	OK	Cancel

22 Click onto the 'Style' tab in the left-hand column of the 'Layer Properties' screen. Select 'Graduated' from the drop-down menu, and choose the '**Population_ages_LSOA_PERCENT_AGE_OVER_60**' column to create the thematic map (see below).

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

23 Change the 'Colour ramp' to a red gradient, and input new categorisation values as below and click 'OK' (Ensure you have chosen the colour ramp before clicking 'Classify' and inputting the new value boundaries, otherwise the values will be recalculated).

💦 General	Style Layer n	endering						
🥑 Style	Layer tra	nsparency	0				0	\$
abc Labels	Layer bler	nding mode	Normal	-	Feature blending mode	Norr	nal	-
Fields	🔰 Gradua	ated 💌						
Display	Column	Population_ages_L	SOA_PERCENT_AGE_	OVER_60				
Actions	Symbol		📕 Cha	ange		Classes	5	
Joins	Color ramp	[source]		•	Mode	Natural Breaks (Jenks	5)
Diagrams	Symbol	V Value	Label					
Metadata		0.2000 - 10.00 10.0000 - 20.0	000 10 - 20					
		20.0000 - 25.0 25.0000 - 35.0						
		35.0000 - 68.9	000 35-68.9					
	Classify	Add class	Delete	Delete all			Advanc	ed
	Style		Default		.oad Style		Save Style	

24 Finally, rename the 'LSOA_Regions_Feb_04' layer as '%_over_60s' or similar.

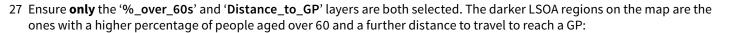
25 Ensure only the '**Terrain_50**', '**VectorMap_District_Vector**' and '**%_over_60s**' layers are selected, with the '**%_over_60s**' thematic map as the bottom layer. Explore the map; what conclusions can you draw based on what you see? Do the areas with a higher percentage of people aged over 60 also have access to a good transport network?

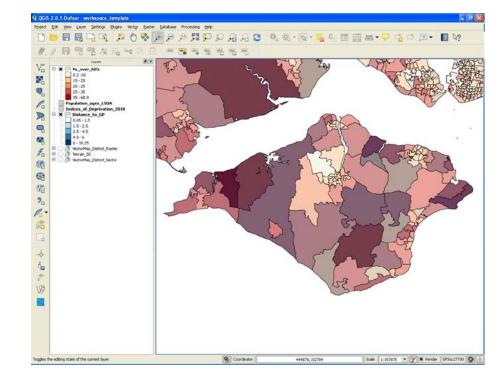
Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS 26 Now we will combine the two thematic maps to provide an overall analysis of the LSOA regions based on distance to a GP surgery, and percentage ageing population. Right-click on the '%_over_60s' layer and select 'Properties'. Move the 'Layer transparency' indicator to '50' (see below) and click OK.

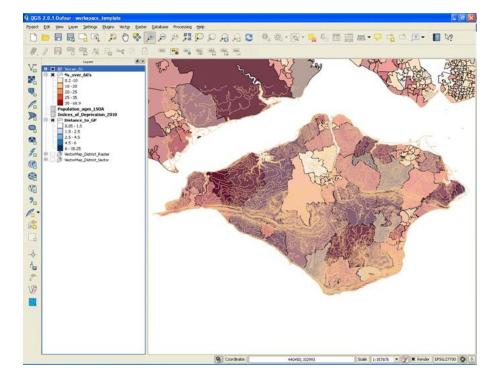

K General	Style Layer r	rendering							
💕 Style	Layer tra	ansparency						50	\$
abc Labels	Layer ble	ending mode	Normal		Feature blending mode	Nor	mal		•
Fields	Gradu	uated 💌							
Display	Column	Population_ages_	LSOA_PERCENT_AGE_	OVER_60		T			
Actions	Symbol		 0v	ange		Classes	5		1
Joins	Color ramp	[source	e]			Mode	Natural Breaks	(Jenks)	
Diagrams	Symbol	Value 0.2000 - 10.0	Label						X
i) Metadata		10.0000 - 20.0 20.0000 - 25.0 25.0000 - 35.0 35.0000 - 68.0	0000 20 - 25						
		Add class						idvance	


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

28 Now, overlay the Terrain_50 layer. What interpretations can you make based on what you can see?

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

Exercise 4 Carrying out a spatial query in QGIS

In this exercise, we will plot GP surgeries on the map. This will allow us to build up a more detailed picture of GP location data. For example, the GP surgeries located within LSOA boundaries are not necessarily in the centre. People within the LSOA may still have difficulty accessing GP facilities. Using this data, we will then identify the LSOAs which contain a GP surgery, by performing a spatial query.

1 Open the saved workspace from exercise 3 in QGIS.

- 2 Click on the 'Add Delimited Text File' button.
- 3 Click 'Browse', and select the 'GP_Locations_2013_LSOA' file within OSOD_QGIS_2013 → ALL_DATA →ONS_Access_data → GP_Locations. This file contains geographical information, in the form of northing and easting point coordinates. Ensure the screen looks like the one below, and click 'OK'.

							Freedow	1175.0	
Lay	er name Gp	locations_2013_LSO	A		sounds of Mills at		Encoding	UIF-8	7.70.524.04
	format				Custom delimiters			r expression	Centracer
	cord options	Number of heade			1		nes		
riek	ld options	Trim fields	Discard	empty rield	is Decimal separa				
						cor o commu			
Geo		on Point coordin			Well known text (Wi		No geome	etry (attribut	e only tab
Geo		on 💿 Point coordin	ates	0	Well known text (W	(T)			e only tab
	ometry definiti	on Point coordin X field easting	ates	0	Well known text (Wi	(T)	5 coordinates		e only tab
		on 💿 Point coordin	ates	0	Well known text (W	(T)			e only tab
	ometry definiti	on Point coordin X field easting	ates	0	Well known text (Wi	(T)	5 coordinates		e only tab
	ometry definiti	on Point coordin X field easting Use spatial in	ates idex	Y fiel	Well known text (Wi d northing Use subset index	(T)	5 coordinates		te only tab
Laye	ver settings	on Point coordin X field easting Use spatial in name	iates idex easting	▼ Y fiel	Well known text (Wi d northing Use subset index LSOA	(T)	5 coordinates		te only tab
Lay	ver settings St Helens M Brookside H	on Point coordin X field easting Use spatial in name edical Centre ealth Centre	ates dex easting 464640 433694	✓ Y fiel Northing 88011	Well known text (Wi d northing Use subset index LSOA E01017284	(T)	5 coordinates		e only tab
Laye	ver settings St Helens M Brookside H	on Point coordin X field easting Use spatial in name edical Centre ealth Centre edical Centre, Ryde	ates dex easting 464640 433694	▼ Y fiel northing 88011 86966	Well known text (Wi d northing Use subset index LSOA E01017284 E01017312	(T)	5 coordinates		te only tab
Layı 1 2 3	ver settings St Helens M Brookside H St Helens M	On Point coordin X field easting Use spatial in name edical Centre edical Centre edical Centre, Ryde f	ates dex easting 464640 433694 462982	 ▼ Y fiel northing 88011 86966 89167 	Well known text (Wi d northing Use subset index LSOA E01017284 E01017312 E01017288	(T)	5 coordinates		te only tab

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS 4 Select the 'OSGB 1936 / British National Grid ESPG:27700' Coordinate Reference System (If this is not within the 'Recently used coordinate reference systems', select from 'Coordinate reference systems of the world' → 'Projected coordinate systems' → 'Transverse Mercator', or use the 'Filter' at the top of the dialog box). Click 'OK'.

oecify (CRS for layer Gp_locations_2013_LSOA		
Filter			
Recent	ly used coordinate reference systems		
Coordi	nate Reference System	Authority ID	
	erated CR5 (+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996		
	erated CR5 (+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996 1936 / British National Grid	USER:100000 EPSG:7405	
WGS 8		EP5G:4326	
	erated CR5 (+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996	USER:100002	
OSGB 1	1936 / British National Grid	EP5G:27700	
•			
Coordin	nate reference systems of the world	🗌 Hide d	leprecated CRSs
Coordi	nate Reference System	Authority ID	•
	New Beijing / Gauss-Kruger zone 21	EP5G:4576	
	- New Beijing / Gauss-Kruger zone 22	EPSG:4577	
	New Beijing / Gauss-Kruger zone 23	EPSG:4578	
	- OSGB 1936 / British National Grid	EP5G:27700	-
•	OCCD 1000 J Date Martine Louid	EDCC-740E	
Selecto	d CR5: OSGB 1936 / British National Grid		
	tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=40000	0 +y_0=-100000 +ellps=a	iry
Troma	s84=375,-111,431,0,0,0,0 +units=m +no_defs		1000

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS This will bring up the GP surgeries onto the map as a separate layer, as below:

- 5 Now, we will determine which LSOAs contain a GP surgery, and which do not. To do this, we perform a spatial query. Firstly, we must open up the LSOA boundary vector dataset. Click 'Add Vector Layer', and select the 'LSOA_regions_Feb04' shapefile. Click 'Open'.
- 6 Now, click on the 'Vector' tab, then 'Spatial Query' as below. You may need to install the plugin, if it is not shown in the Vector tab. To do this, go to 'Plugins', select 'Manage and Install Plugins...', and select 'Spatial Query Plugin' (x).

Plugins	Vector Raster Database	Processing Help
2	Coordinate Capture Dxf2Shp	IMPP.
1	GPS OpenStreetMap	
2000 B	Road graph	
)6	Spatial Query	I Spatial Query
	Topology Checker	
	🔬 Analysis Tools	*
lector Laster	🛓 Research Tools	• 0
on_2010	Geoprocessing Tools	111151
A	Geometry Tools	· L / 12
	Data Management Tools	· .

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3

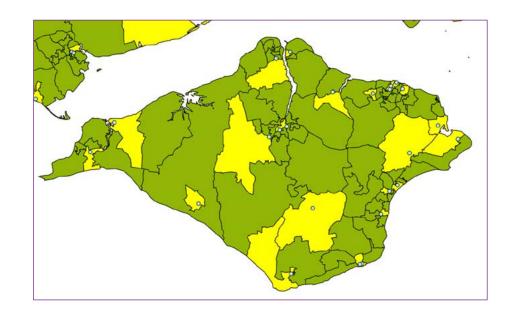
Opening the ONS data in QGIS

Exercise 4

Carrying out a spatial query in QGIS

7 Fill in the screen, as below, and click 'Apply':

8 This will bring up another screen summarising the query and showing how many selections have been made (that is, how many LSOAs contain a GP surgery, see below). Click 'Close'.


Select source features from		Result feature ID's	
CALSOA_regions_Feb04	-	Result query	
X 22 selected geometries		17283	-
Where the feature		17288 17290 17293	
Contains	-	17298	
Reference features of		17305 17306 17311	4 4 9 1 1
Gp_locations_2013_LSOA	•	17317 17325	
Selected geometries		17327 17333	
And use the result to		17335 17336	
Create new selection		17345 17348 17353	
		22 of 34378 identified	M
Selected features		Zoom to item	
22 of 34378 selected by "Create new selection"	M	Log messages	

Exercise 1 Downloading OS OpenData

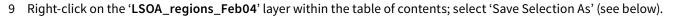
Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS You will see a screen similar to the one below:

Here the yellow areas represent those LSOAs which contain a GP surgery.

We now need to save the selection to remove those LSOAs which do not contain a GP surgery (the green areas) in order to interpret the map more effectively.


Exercise 1 Downloading OS OpenData


Exercise 2 Opening the OS OpenData products in QGIS

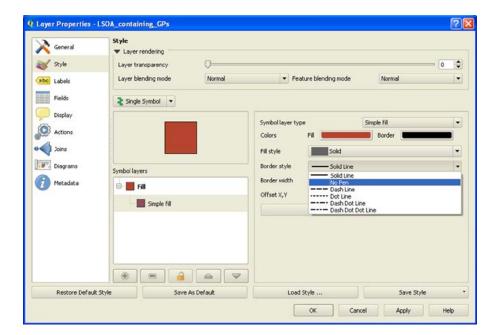
Exercise 3

Opening the ONS data in QGIS

Exercise 4 Carrying out a spatial query in QGIS

10 Click on 'Browse' and select a location you can easily access, for example within the OSOD_QGIS_LSOA_2013 folder. Name the vector layer 'LSOA_containing_GPs' or similar. Check the box 'Add saved file to map', as below. Click 'OK'.

Format	ESRI Shapefile	-
Save as	LSOA_containing_GPs	Browse
Encoding	System	
	Layer CR5	1.
CRS	=6356256.161 +units=m +no_defs)	Browse
Symbology export	No symbology	1.
Scale	1:50000	K
Data source		
Data source		
Data source Layer Sip attribute X Add saved fil		


Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS

- 11 You can now delete the LSOA_regions_Feb04 layer. Right-click on the layer in the table of contents and select 'Remove'.
- 12 Right-click on the new 'LSOA_containing_GPs' layer, click 'Properties', and change the 'Border style' to 'No Pen', as below. Change the fill colour if you wish.

Exercise 1 Downloading OS OpenData

Exercise 2 Opening the OS OpenData products in QGIS

Exercise 3 Opening the ONS data in QGIS

E**xercise 4** Carrying out a spatial query in QGIS The resulting map should look similar to the one below:

How does the addition of this new layer affect the way you view the case study? Open up all the layers together. Are there any unusual results? (Clue: does the 'Distance to GP' and 'GP location' data agree?) What conclusions can you draw from this?

General information www.ordnancesurvey.co.uk/contactus

General enquiries +44 (0)8456 05 05 05

Textphone +44 (0)23 8005 6146

This document has been screened in accordance with the requirements set out in Ordnance Survey's Equality Scheme. If you have difficulty reading this information in its current format and would like to find out how to access it in a different format (Braille, large print, computer disk or in another language), please contact us on: +44 (0)8456 05 05 05.

Ordnance Survey, the OS Symbol, OS VectorMap and OS Terrain 50 are registered trademarks, and OS OpenData and OS getamap are trademarks of Ordnance Survey, the national mapping authority of Great Britain.

Ordnance Survey © Crown copyright D11126 1013

